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Network Coding for Network Security

Objective

Use network coding to enable greater

robustness and security

» Reduce vulnerability eavesdroppers in networks

* Provide reliability to Byzantine nodes in changing
conditions

» Provide constructive means of creating schemes that
are as efficient as traditional point-to-point coding
schemes
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Number of symbols that an intermediate node
has to guess in order to decode one of the symbols

Scientific/Technical Approach

* Use the algebraic linear mixing of data to allow
intrinsic keys from other data by considering the
diagonalizability of matrices

« Since robustness using network coding depends on
having sufficient degrees of freedom to counteract
attackers over the entire network, we develop means
of tracking topology in changing P2P networks

‘Use network coding for constructing codes that
match Singleton bound even with unknown attackers

Accomplishments

« New algorithms that use network coding for:
« data hiding without the use of a key —
ensuring sufficient degrees of freedom to
decode over at the receiver in variable settings
« creating efficient coding schemes for
Byzantine attacks
« providing quantification of the benefits of
network coding

Challenges

®|ntegrating protection, degree of freedom design
and coding .




Key Accomplishments

Technical breakthroughs:

— Demonstrated the use of network coding to provide intrinsic cryptographic protection for
wiretapped networks

— Provided new means of using network coding for networks under attack:

* For distributed network coded storage networks (peer-to-peer), a method for tracking the
evolving topology of a peer-to-peer network so as to ensure sufficient coded diversity
against attackers

* For general networks, a robust coding approach that matches the Singleton bound even
under attack scenarios for unknown attack locations as long as a level of diversity is
ensured

* We show that random network coding provides better reliability than random dispersive
routing if there is enough capacity in the network

The support of AFOSR in this context is crucial:

— Only program to our knowledge that considers security of network coding in wireline systems,
including P2P

— Deployment of network coded P2P systems is taking place commercially (Microsoft) and holds
great promise for military applications,

— Collaboration with industry (HP) for technology transfer and synergies with DARPA IAMANET
program (which is focused entirely on MANETSs but can leverage some aspects of this
program), collaborations with general theoretical underpinnings for network coding through NSF
program and European program




Content distribution usmg network coding
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* Network coding operates by allowing mixing of data
* What are the security consequences of such mixtures?
* Two aspects:

— Wiretapping aspects

— Byzantine or pollution attacks — detection and correction A malicious user 4
sends packets with valid linear combination in header, but garbage payload




Wiretapping aspects

The mixture of two messages, appropriately compressed, makes one message a one-time
pad to another [CY02]

If we want such mixtures, one can derive limits on network capacity [FMSS04]
In general

— Difficult to know the maximum number of links that can be tapped by adversary
— Such secure coding schemes are sometimes impossible

Main scheme:
— Use other messages for “encryption”

— If no other messages are sent: identical to dispersive routing [JM04, LLF04]
— If other messages are sent: extra security from network coding
Security can be added via network coding with lower cost than dispersive routing [TMO06]

Define level of security provided by random linear network coding is measured by the
number of symbols that an intermediate node has to guess in order to decode one of the
transmitted symbols [LMBO07], [LVMBO08]




Random linear coding — a free cypher?

Overview:
* Random linear coding (RLC) in effect provides a one-time 2
use pad use of data in combination x[0|1
* Level of security provided by RLC.: 0Ol0l0|O
— Number of symbols that an intermediate node v has to
guess in order to decode one of the transmitted 110|112
symbols
— Partial transfer matrix 21021
*  We consider these results under different topologies
Model, definitions, approach and results;
* Two cases w/ relevant information: 2
P(X,, =0)=—
1. Partial transfer matrix has full rank q
2. Partial transfer matrix has diagonizable parts
* Linear combination of independent and uniformly distributed P(X, =0) _
values in F, - g
*  Product- Obain a zero: 2q zeros, (a € F,)x0
. q entries of the multiplicative table
* Probability p of having = K —1 zeros in one or more lines K 9) 2 &=l
p= —(1-=
K-1)\g q i




Random linear coding — a free cypher?

Analysing the different possibilities of

combinations for the lines that already 1<§,(v)<K ~ L=§,(v)-1
have (K-1) zeros and the ones that can = Lines to perform
be obtained by Gaussian elimination Gt il
L=1 jines with
recoverable number of symbols
K] Zeros

5, (V) degrees of freedom

t{6,(v)=1 = [X=1, PX=1)=p

a-py 3p/p)*  3p*(\-p) *

(1= p)_3p(0—p¥ 3p4~-p) fp’ (1-py 2pQl-p) aA\p) i

L=1) (L=2) |L=3) (L=1] [L=2] [L=3




Byzantine and pollution attacks

Robustness against faulty/malicious components with arbitrary
behavior, e.g.

— dropping packets

— misdirecting packets

— sending spurious information

Abstraction as Byzantine generals problem [LSP82]

Byzantine robustness in networking [P88,MR97,KMM98,CL99]




Problem setup

Random linear network coding using coding vectors.
A batch of r packets is multicast from a source node s to a set of sink nodes.

A packet that is not a linear combination of its input packets is called =
adversatrial,

z,— the maximum number of adversarial packets

m — the minimum source-sink cut capacity

p — proportion of redundant symbols in each packet

An omniscient adversary can observe transmission on the entire network
Main results:

— If the adversary is omniscient, the information rate of the code approaches
m-2z, asymptotically as the packet size increases. -

— If the adversary is NOT omniscient, and the source and the sinks share a
secret channel not observed by the adversary, a rate of m-z, is
asymptotically achievable.

— WIill give details for the omniscient adversary case.




Byzantine and pollution attacks —
correction at decoding time
Distributed randomized network coding can be extended to detect Byzantine
behavior
— Small computational and communication overhead

— small number of hash bits included with each packet, calculated as simple
polynomial function of data

Require only that a Byzantine attacker does not design and supply modified
packets with complete knowledge of other nodes’ packets

Main scheme:
— Use a polynomial hash

— An attacker without full knowledge of the traffic will have low probability of
being able to match the hash

— The hash can be used to detect an attack [HLKMEKO04]
One can further use such a hash to decode

10




Omniscient adversary case

Input matrix, X, whose #th row, x;, corresponds to the #h input packet.
— The first n-pn-r entries of x; are independent exogenous data symbols.
— The next pn are redundant symbols.
— The last r symbols form the coding vector.

An adversarial packet can be viewed as an additional source packet, and Zis the
matrix whose #ith row is the ith adversarial packet.

The received packets at a terminal node can be represented by Y, given by
Y=GX+ KZ

where G and K are the linear mappings from the source and the adversarial packets
respectively to the sink.

Let G’ be the last r columns of Y.
The sink knows G’ but not G.

11




Omniscient adversary case

Lemma 1:

With probability at least 1-1/qg, the matrix G’ has full column rank, where n is
the number of links in the network, and q is the size of the finite field.

Proposition 1:

With probability greater than 1-g"¢, the input matrix X can
be recovered, and the decoding algorithm has
complexity O(n°m3).

12




Byzantine correction .
Block-length n over finite field F, D=Ti(1).14Ti(2).r+.. +T(n(1- €)).r"
"
E ﬁ Vandermonde
i} : matrix
Symbot it = J

from F, n(1-€)

|Z]

Choose majority (r,D;,...,Dg)__

D=T,(1).1+T,(2)".r+...+T(n(1- €)).r-© ? If so, accept T,, else reject T,
Use accepted T;s to decode [Jaggi05], [JLHEO5], [JKLHDKMO7]

‘—-—-—N
R
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Network error correcting codes for adversarial
errors in multiple source networks

Overview:

* Network error correcting codes allow reliable transmission over a network that is
subject to adversarial errors [KK07, 08]

* Existing work gives bounds and explicit code constructions for single-source
multicast networks

* We generalize these results to multiple source multicast networks
Model and definitions:

* We consider a directed graph G with a set U of source nodes, and an adversary
that can introduce arbitrary errors on up to z links

* The region of reliable multicast transmission rates k; from the /" source to the sinks

is given in terms of the minimum cut capacities mg between sources in subsets S
of U and each sink

Approach and results:
* The reliable communication rates under z adversarial errors satisfy
— Singleton bound:; k.<mg-2z,¥SCU

— Hamming boundzz ks mg-log, E‘;_o ('/'." )q—l)"',VS cU
=




Network error correcting codes — keeping
enough degrees of freedom around

/0 @ @ ® @

Overview:
* Determining the level of diversity against pollution is

crucial in ensuring the operation of coding against 0 &% 0 ¢
attackers [LBKO8] | ’ o \) @ ’
Model, definitions and approach: { . S

* In order to be able to model accurately the topology of a
peer-to-peer distributed network with network codingwe .;~,. . © © ® © © ©
introduce the following:

— Evolving overlay network: Scale-free random grap’ M

__________________

— Three types of nodes: data source, data collector,
data keeper

— A tracker keeps a record of all nodes that store
packets

'
/

— Each keeper connects to a positive number of
nodes in order to create diversity in the linear
independence of packets in the network

\
N

Information contact graph evolving

through time.
15




Verification for content distribution
without decoding

We may want is a means of detecting that a single packet is polluted without decoding

Need a homomorphic signature scheme that allows nodes to verify any linear
combination of pieces without contacting the original sender or decoding packets

Can use homomorphic hash functions [ADMKO05], [GR06]

Can use Secure Random Checksum (SRC) which requires less computation than the
homomorphic hash function, but requires a secure channel to all the nodes [KFMO06]

A signature scheme without a secure channel for transmitting hash values and
associated digital signatures of received and transmitted blocks

— Weil pairing on elliptic curves provides authentication of the data in addition to
pollution [CJLO6]

— Use a scheme that relies on the network coding scheme intrinsically [ZKMHO07]
We take a novel approach that uses a more algebraic angle [ZKMHO07], [HHKMZ07]
It can be shown that it is as hard as the (p, m, m+n) Diffie-Hellman problem
Overheads

— Part of the public key has to be re-generated for each file

— Signature vector

If the file sizes are Iar?e, after the initial setup, each additional file distributed only incurs
a negligible amount of overhead using our signature scheme

Our signature scheme has to be applied on the original file, not on hashes "




Conclusions

This program has provided us the ability to develop means of:

— Establishing new means of data protection using network
coding

— Constructing families of codes that are near-optimal
theoretically to recover from Byzantine attacks without
locating them

— Creating a means for verifying validity of data without
decoding or using a trusted authority

— Creating a means of tracking reliability of network under
network coding

17




Networks with random erasures and adversarial

Overview: errors — WP

* Network codes offer useful error and erasure correction _— 4
capabilities, but can also suffer from error propagation E - ;

* The extent and manner in which network coding should be applied ¢ .| 7 7 |
is shown to depend on the network topology and the probability El !
distribution of erasures and errors ;

Model: i - =

* Packet transmissions in the network are randomly subject to R 5 T
erasures and adversarial or arbitrary errors, with probabilitespand =~~~ =%,
q respectively | =

*  We compare different coding and routing strategies for transmitting | ' |
over multiple source-sink paths I l

Approach and results: Ay ‘,

* We show that when the source performs random coding ,the ﬁ T / ]
problem can be reduced to optimization of the strategy used on ﬂ ]|
each path t o s 0% o '_‘—“f;—u:a]s.-

* We define a quantity called information rank loss which can be R
used as a proxy for probability of successful decoding in the s
optimization problem (minimize information rank loss) |

* We find that random coding becomes more beneficial relative to i )
routing as the redundancy (minimum cut capacity C — source £ o A ) 1
information rate R) increases, and as q decreases relative to p (as | ¢ P
shown in the graphs for 2 equal paths with p=0.1, C=20) ) ;r -

* We can also optimize the trade-off between coding across paths [ |
and coding among packets transmitted on a path T Te O 6 oW o oW o

“
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Ré‘;vc;rk _Coaing for Network Security

Objective

Use network coding to enable greater
Robustness and security

* Use network coding for detection and correction
of Byzantine attackers

* Provide network-coding based verification
systems without the need for a trusted authority
» Use network coding for providing free cyphers

3

Source

arﬁl +a,xB

 x Al+d,xA2

j Peer B2
!

in the network i
Verification can occur without trusted authority
Scientific/Technical Approach Accomplishments

® Use the algebraic linear mixing of data to detect
Byzantine attackers through the use of polynomial
hashes

® Extend MDS-style codes in conjunction with
hash-based maijority voting scheme

® Generalize coding bounds by use of q-Johnson
scheme, akin to the Grassmannian manifold approach
in continuous cases

® Use discrete-log approach for verification in a manner|

that is robust to linear operations
® Use data mixture as one-time pad in the network

» New algorithms for detection and correction
of attacks in the context of users with shared secrets,
omniscient adversaries and limited adversaries
» New theoretical basis for the study of errors an
erasure based on g-Johnson scheme
* A new algorithm for secure network-coding
based peer-to-peer file exchanges based on ney
signature schemes, developed with H-P Laborat

Challenges

@ Applying our verification approach on hash function
of the data.

L* 24




Impact and outreach

= The support of AFOSR is important since this topic is directly rooted
in adversarial settings. As such, namely as an investigation of
information dissemination robustness using network coding in a

hostile setting, this topic is identified as natural research in
military contexts

= We believe that demonstrating the robustness of network
coding when it is combined with error correction in a natural way,
will be an enabling factor for the application of network coding in
highly volatile, hostile scenarios. Moreover, the techniques are
applicable also in non-adversary network contexts, which promises
to have a high impact factor.

= Collaboration with Dina Katabi, Sachin Katti (MIT CSAIL), Sid Jaggi
(Chinese University of Hong Kong), Michael Lanberg ﬁThe Open
University of Israel), Michelle Effros (Caltech), Ton Kalker (HP Labs)
— Commercial impact and synergistic collaboration with DARPA

ITMANET and CBMANET projects for transitioning ideas to
MANETSs




' Byzantine and pollution attacks

= Robustness against faulty/malicious
components with arbitrary behavior, e.g.
o dropping packets
o misdirecting packets
o sending spurious information

= Abstraction as Byzantine generals problem
[LSP82]

= Byzantine robustness in networking
[P88,MR97,KMM98,CL99]




Byzantine and pollution attacks

Distributed randomized network coding can be extended to
detect Byzantine behavior

o Small computational and communication overhead

o Small number of hash bits included with each packet, calculated
as simple polynomial function of data

Require only that a Byzantine attacker does not design and
supply modified packets with complete knowledge of other
nodes’ packets

Main scheme:
a Use a polynomial hash

o An attacker without full knowledge of the traffic will have low
probability of being able to match the hash

o The hash can be used to detect an attack [HLKMEKO04]
One can further use such a hash to decode




' Byzantine correction
Block-length n over finite field F

D=T((1).1+T,(2).r+.. +T(n(1- £)).r(1-

. *
>E=
Choose majority (r,D;,...,Dg, R

D=T,(1).1+T,(2)".r+...+T(n(1- €)).r-2 ? If so, accept T, else reject T, 1
Use accepted T;s to decode [Jaggi05], [JLHEOS5], [JKLHDKMO07] ‘

\
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(Ngt_work— coding and network error
correction

Random network coding is susceptible to modifications of packets (adversary,
jamming, non-hostile, packet erasures)

= Error correction in combination with network coding was considered by Yeung et al.,
and Zhang - here the network topology plays a central role

= JWorIg in thle context of Byzantine modifications in arbitrary networks: Ho et al. and
aggi et al.

We consider a network as a modeled by a random linear operator reflecting the
Operation of random network coding on a network of unknown topology

Operator Channel: Input is a subspace V of ambient n-dimensional space W,

H is a random linear operator mapping V to a k-dimensional
subspace of V; E is an error space of dimension t(E)

Output is a subspace U of W
. S, Hk‘ LN
Te

This formulation is very similar to non-coherent detection in the MIMO case: Zheng and Tse




Network coding and network error
correction

Just as in the MIMO case: Constructing codes is equivalent to
packing subspaces of dimension An in ambient space of dimension n.

The metric for defining distance between two spaces A,B is a
d(A.B) := dim(A & B) — dim(A N B)
Input: arbitrary basis vector Equivalent to finding
for a chosen space U e codes in the
f dimension L
NS - NETWORK Grassmannian graph
/ (g-Johnson scheme)

Injection of an error space E

of dimension t
—_— ‘

Output: basis vectors

Different modes of operation: for a space Y

fi=dim(U )-dim(UNY) is the number of “erasures’”

t =dim(Y)-dim(y NU) s the number of “errors”
We can correct any number of errors and erasures as long as 2(fi+1)<D




Content distribution of large files

= Distribution of large files to many users.

= [raditional solutions are based on a client-server
model.

= Alternative technique - P2P swamping.

= Example - BitTorrent
o Divide file into many pieces.

a Client requests different pieces from server(s) or other
users.

a Client becomes server to pieces downloaded.

a When a client has obtained all pieces, re-construct the
whole file.

a Problem: hard to do optimal scheduling of pieces to nodes.




' Content distribution using network
coding

= Use network coding to increase the efficiency of
network coding in a P2P cooperative architecture
[ADMKO05], [DPRO05%5], [GRO5%], [DGWRO07]

= Instead of storing pieces on servers, store random
linear combination of the pieces on servers

= Clients also generate random linear combination of
the pieces they have received to send out

= When a client has accumulated enough degrees of
freedom, decode to obtain the whole file




‘ Content dlstnbutlon usmg network

a, x Pl+a, xP2+a xP3

coding AT:/

Al 1, x Al+d,xA2
e Peer A Peer E E2
Peer C .
= A malicious user can send packets with valid linear combination in the header,

but garbage in the payload
= The pollution of packets spreads quickly

= Need a homomorphic signature scheme that allows nodes to verify any linear
combination of pieces without contacting the original sender or decoding packets




l Verification for content distribution

= Can use homomorphic hash functions in content distribution
systems to detect polluted packets [ADMKO05], [GRO6]

= Can use Secure Random Checksum (SRC) which requires less
computation than the homomorphic hash function, but requires a

secure channel to transmit the SRCs to all the nodes in the
network [KFMO6]

= A signature scheme without a secure channel for transmitting
hash values and associated digital signatures of received and
transmitted blocks;

o Weil pairing on elliptic curves provides authentication of the data
in addition to pollution [CJLO6]

o Use a scheme that relies on the network coding scheme
intrinsically [ZKMHO7]




Problem formulation

= A source s wishes to send a large file to a group of
peers, T

= View the data to be transmitted as vectors v,...,v_in

m

n-dimensional vector space F, where p is a prlme The
source node augments these vectors tov,,...,v, given

by

v, =(0,....1,...,0,v,,..., V. )
where the first m elements are zero except the i-th one is
l,and v, EF,

= Each packet received by a peer IS a linear combination
of all the pieces.
W = /5




Signature for network coding

= The vectors v,,...,v, span a subspace V of F"*".

= A received packet is a valid linear combination if and
only if it belongs to V.

= Each node verifies the integrity of a received vector
w by checking the membership of win V.

« Our approach has the following ingredients:
o ¢: alarge prime such that p is a divisor of g -1.
o gt a generator of the group G of orderpin F, .
2 Private key: K ={a,},, ,.,arandom set of elements
in F.
2 Public key: K, = {h, = gai}i=],...,m+n .




Signature for network coding

= [The scheme works as follows:

» The source finds a vector « that is orthogonal to all
vectors in V.

» The source computes vector x=(v,/a,,...,u,. /a,.,).

> m+n

r The source signs x with some standard signature
scheme and publishes it.

+ When a node receives a vector w and wants to verify
that wis in V, it computes

m+n

d = H hix,»w,.

and verifies that d =1.




Dlscuss1on

= It can be shown that it is as hard as the (p, m, m+n) Diffie-Hellman
problem

= Thus, it is as hard as the Discrete Logarithm problem to find new
vectors that also satisfy the verification criterion other than those
that are in V' [BF99]

= Overheads

o Part of the public key K, has to be re-generated for each file,
otherwise a malicious node can use the information from the
previous file

o Signature vector, x

= If the file sizes are large, after the initial setup, each additional file
distributed only incurs a negligible amount of overhead using our
signature scheme

= Our signature scheme has to be applied on the original file, not
on hashes.




Looking forward

= The free cypher of network coding can lead to new ways
of managing security in the networks:
o Using partial knowledge of a file as a cypher
o Rate-based security in networks?

= Network coding for pollution detection and correction:
o How do we locate attackers?
o What is the effect of incorrect network management?
o Connection with network tomography using network coding
[FMO5, 06]
=« Verification in network coding:
o Can we find further network coding specific schemes?
o Can we use schemes on hashes?
o What are the interactions with free cyphers in networks?
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Resilient Network Coding in the Presence of
Byzantine Adversaries

Sidharth Jaggi, Member, IEEE, Michael Langberg, Sachin Katti, Tracey Ho, Member, IEEE, Dina Katabi,
Muriel Médard, Fellow, IEEE, and Michelle Effros, Senior Member, IEEE

Abstract—Network coding substantially increases network
throughput. But since it involves mixing of information inside
the network, a single corrupted packet generated by a malicious
node can end up contaminating all the information reaching a
destination, preventing decoding.

This paper introduces distributed polynomial-time rate-optimal
network codes that work in the presence of Byzantine nodes. We
present algorithms that target adversaries with different attacking
capabilities. When the adversary can eavesdrop on all links and
jam =0 links, our first algorithm achieves a rate of C' — 220, where
C is the network capacity. In contrast, when the adversary has lim-
ited eavesdropping capabilities, we provide algorithms that achieve
the higher rate of C — .

Our algorithms attain the optimal rate given the strength of
the adversary. They are information-theoretically secure. They
operate in a distributed manner, assume no knowledge of the
topology, and can be designed and implemented in polynomial
time. Furthermore, only the source and destination need to be
modified; nonmalicious nodes inside the network are oblivious to
the presence of adversaries and implement a classical distributed
network code. Finally, our algorithms work over wired and wire-
less networks.

Index Terms—Byzantine adversaries, distributed network
error-correcting codes, eavesdroppers, information-theoretically
optimal, list decoding, polynomial-time algorithms.

I. INTRODUCTION

ETWORK coding allows the routers to mix the infor-
mation content in packets before forwarding them. This
mixing has been theoretically proven to maximize network
throughput [1], [23], [21], [15]. It can be done in a distributed
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manner with low complexity, and is robust to packet losses and
network failures [10], [25]. Furthermore, recent implementa-
tions of network coding for wired and wireless environments
demonstrate its practical benefits [18], [8].

But what if the network contains malicious nodes? A ma-
licious node may pretend to forward packets from source to
destination, while in reality it injects corrupted packets into
the information flow. Since network coding makes the routers
mix packets’ content, a single corrupted packet can end up
corrupting all the information reaching a destination. Unless
this problem is solved, network coding may perform much
worse than pure forwarding in the presence of adversaries.

The interplay of network coding and Byzantine adversaries
has been examined by a few recent papers. Some detect the pres-
ence of an adversary [12], others correct the errors he injects into
the codes under specific conditions [9], [14], [22], [31]. and a
few bound the maximum achievable rate in such adverse envi-
ronments [3], [29]. But attaining optimal rates using distributed
and low-complexity codes was an open problem.

This paper designs distributed polynomial-time rate-optimal
network codes that combat Byzantine adversaries.! We present
three algorithms that target adversaries with different strengths.
The adversary can inject zo packets per unit time, but his lis-
tening power varies. When the adversary is omniscient, i.e., he
observes transmissions on the entire network, our codes achieve
the rate of C' — 22, with high probability. When the adversary’s
knowledge is limited. either because he eavesdrops only on a
subset of the links or the source and destination have a low-rate
secret channel, our algorithins deliver the higher rate of C — 2.

The intuition underlying all of our algorithms is that the ag-
gregate packets from the adversarial nodes can be thought of as
a second source. The information received at the destination is a
linear transform of the source’s and the adversary’s information.
Given enough linear combinations (enough coded packets), the
destination can decode both sources. The question however is
how does the destination distill out the source’s information
from the received mixture. To do so, the source’s information
has to satisfy certain constraints that the attacker’s data cannot
satisfy. This can be done by judiciously adding redundancy at
the source. For example, the source may add parity checks on
the source’s original data. The receiver can use the syndrome of
the received packets to determine the effect of the adversary's
transmissions. The challenge addressed herein is to design the
parity checks for distributed network codes that achieve the op-
timal rates.

!Independently and concurrently to our work, Koetter and Kschischang [19]
present results of similar nature which are discussed in detail in Section 1.

0018-9448/325.00 © 2008 IEEE
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Conceptually, our proof involves two steps. We first analyze
standard network coding in the presence of Byzantine adver-
saries (without adding additional redundancy at the source). In
this setting, as expected, destination nodes cannot uniquely de-
code the source’s data, however, we show that they can list de-
code this data. Namely, receivers can identify a short list of po-
tential messages that may have been transmitted. Once this is
established, we analyze the effect of redundancy at the source
in each one of our scenarios (omniscient or limited adversaries).

This paper makes several contributions. The algorithins pre-
sented herein are distributed algorithms with polynomial-time
complexity in design and implementation, yet are rate-optimal.
In fact, since pure forwarding is a special case of network
coding, being rate-optimal, our algorithms also achieve a
higher rate than any approach that does not use network coding.
They assume no knowledge of the topology and work in both
wired and wireless networks. Furthermore, implementing our
algorithms involves only a slight modification of the source and
receiver while the internal nodes can continue to use standard
network coding.

II. RELATED WORK

Work on network coding started with a pioneering paper by
Ahlswede er al. [1], which establishes the value of coding in
the routers and provides theoretical bounds on the capacity of
such networks. The combination of [23], [21], and [15] shows
that, for multicast traffic, linear codes achieve the maximum
capacity bounds, and both design and implementation can be
done in polynomial time. Additionally, Ho et al. show that the
above is true even when the routers perform random linear op-
erations [10]. Researchers have extended the above results to a
variety of areas including wireless networks [25], [17], [18], en-
ergy [28], secrecy [2], content distribution [8], and distributed
storage [16]. For a couple of nice surveys on network coding
see, e.g., [30], [7].

A Byzantine attacker is a malicious adversary hidden in a net-
work, capable of eavesdropping and jamming communications.
Prior research has examined such attacks in the presence of net-
work coding and without it. In the absence of network coding,
Dolev er al. (5] consider the problem of communicating over a
known graph containing Byzantine adversaries. They show that
for k adversarial nodes, reliable communication is possible only
if the graph has more than 2k + 1 vertex connectivity. Subrama-
niam extends this result to unknown graphs [27]. Pelc ez al. ad-
dress the same problem in wireless networks by modeling mali-
cious nodes as locally bounded Byzantine faults, i.e., nodes can
overhear and jam packets only in their neighborhood [26].

The interplay of network coding and Byzantine adversaries
was examined in [12], which detects the existence of an adver-
sary but does not provide an error-correction scheme. The work
of Cai and Yeung [2], [29], [3] generalizes standard bounds on
error-correcting codes to networks, without providing any ex-
plicit algorithms for achieving these bounds. Our work presents
a constructive design to achieve those bounds.

The problem of efficiently correcting errors in the presence of
both network coding and Byzantine adversaries has been con-
sidered by a few prior proposals. Earlier work [22], [9] assumes
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a centralized trusted authority that provides hashes of the orig-
inal packets to each node in the network. Charles ez al. [4] ob-
viates the need for a trusted entity under the assumption that
the majority of packets received by each node is uncorrupted.
Recently, Zhao et al. [32] have demonstrated error detection in
the public key cryptographic setting. In contrast to the above
schemes which are cryptographically secure, in a previous work
[14], we consider an information-theoretically rate-optimal so-
lution to Byzantine attacks for wired networks, which however
requires a centralized design. This paper builds on the above
prior schemes to combine their desirable traits; it provides a dis-
tributed solution that is information-theoretically rate optimal
and can be designed and implemented in polynomial time. Fur-
thermore, our algorithms have new features; they assume no
knowledge of the topology, do not require any new function-
ality at internal nodes, and work for both wired and wireless
networks.

The work closest in spirit to our work is that of Koetter and
Kschischang [19], who also studied the presence of Byzantine
adversaries in the distributed network coding setting. They
concentrate on communicating against an omniscient adver-
sary, and present a distributed scheme of optimal rate C — 2z(.
The proof techniques of [19] differ substantially from those
presented in this work. In a nutshell, Koetter and Kschischang
reduce the model of network coding to a certain point-to-point
channel. They then construct generalizations of Reed—Solomon
codes for this channel, which enables the authors 1o construct
deterministic network error-correcting codes as mentioned
above.

We would like to note that the abstraction used in [19] (al-
though very elegant) comes at a price. It does not encapsulate
the additional Byzantine scenarios that arise naturally in prac-
tice and are addressed in our current paper (i.e., adversaries of
limited knowledge, discussed in Sections VI and VIII). More
specifically, our protocol enables us to attain the higher rate of
C — 20, albeit only under the (weaker) requirement of list de-
coding. List decoding in the setting of network communication
is a central ingredient in our proofs for limited adversaries. To
the best of our current knowledge, the abstraction of [19] (al-
though based on Reed-Solomon like codes) does not allow ef-
ficient list decoding.

III. MODEL AND DEFINITIONS

We use a general model that encompasses both wired and
wireless networks. To simplify notation, we consider only the
problem of communicating from a single source to a single des-
tination. But similarly to most network coding algorithms, our
techniques generalize to multicast traffic.

A. Threat Model

There is a source, Alice, who communicates over a wired or
wireless network to a receiver Bob. There is also an attacker
Calvin, hidden somewhere in the network. Calvin aims to pre-
vent the transfer of information from Alice to Bob, or at least
to minimize it. He can observe some or all of the transmissions,
and can inject his own. When he injects his own data, he pre-
tends they are part of the information flow from Alice to Bob.
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= n - packet size
X=> .Z] IB - Batch Size
8n - redundant symbols
_ n - packet size
- -+, _No. of packets
z2= I [L]iz Calvin injects
_ n - packet size
Y=> T | | €- Network Capacity

Fig. I. Alice, Bob, and Calvin’s information matrices.

Calvin is quite strong. He is computationally unbounded. He
knows the encoding and decoding schemes of Alice and Bob,
and the network code implemented by the interior nodes. He
also knows the exact network realization.

B. Network and Code Model

Network Model: The network is modeled as a hypergraph
[24). Each transmission carries a packet of data over a hyper-
edge directed from the transmitting node to the set of observer
nodes. The hypergraph model captures both wired and wire-
less networks. For wired networks, the hyperedge is a simple
point-to-point link. For wireless networks, each such hyperedge
is determined by instantaneous channel realizations (packets
may be lost due to fading or collisions) and connects the trans-
mitter to all nodes that hear the transmission. The hypergraph is
unknown to Alice and Bob prior to transmission.

Source: Alice generates incompressible data that she wishes
to deliver to Bob over the network. To do so, Alice encodes her
data as dictated by the encoding algorithm (described in subse-
quent sections). She divides the encoded data into batches of &
packets. For clarity, we focus on the encoding and decoding of
one batch.

A packet contains a sequence of n symbols from the finite
field F,. All arithmetic operations henceforth are done over
symbols from F,. (See the treatment in [20].) Out of the n sym-
bols in Alice’s packet. dn symbols are redundancy added by the
source.

Alice organizes the data in each batch into a matrix X as
shown in Fig. 1. We denote the (7, j)th element in the matrix
by z(7,7). The ith row in the matrix X is just the ith packet
in the batch. Fig. 1 shows that similarly to standard network
codes [10], some of the redundancy in the batch is devoted
to sending the identity matrix /. Also, as in [10], Alice takes
random linear combinations of the rows of X to generate her
transmitted packets. As the packets traverse the network, the in-
ternal nodes apply a linear transform to the batch. The identity
matrix receives the same linear transform. The destination dis-
covers the linear relation, denoted by the matrix T', between the
packets it receives and those transmitted. This is done by in-
specting how I was transformed.

Adversary: Let the matrix Z be the information Calvin
injects into each batch. The size of this matrix is zp x n, where
zo is the number of edges controlled by Calvin (alternatively,
one may define zo to be the size of the min-cut from Calvin
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to the destination). In some of our adversarial models we limit
the eavesdropping capabilities of Calvin. Namely, we limit the
number of transmitted packets Calvin can observe. In such
cases, this number will be denoted by z;.

Receiver: Analogously to how Alice generates X, the re-
ceiver Bob organizes the received packets into a matrix Y. The
ithreceived packet corresponds to the ith row of Y. Note that the
number of received packets, and therefore the number of rows
of Y, is a variable dependent on the network topology. Bob at-
tempts to reconstruct Alice's information X, using the matrix
of received packets Y.

As mentioned in the Introduction, conceptually, Bob recovers
the information of Alice in two steps. First, Bob identifies a set
of linear constraints which must be satisfied by the transmitted
information X of Alice. This set of constraints characterizes a
linear subspace of low dimension in which X must lie. We refer
to this low-dimensional subspace as a linear list decoding of X.
Once list decoding is accomplished, unique decoding follows
by considering additional information Bob has on the matrix
X (such as its redundancy, or information transmitted by Alice
over a low rate secret channel).

Network Transform: The network performs a classical dis-
tributed network code [10]. Specifically, each packet transmitted
by an internal node is a random linear combination of its in-
coming packets. Thus, the effect of the network at the destina-
tion can be summarized as follows:

Y=TX+TZ. (1]

This can be written as
X
Y = (1|7 [ z] @)

where X is the batch of packets sent by Alice, Z refers to the
packets Calvin injects into Alice’s batch, and Y is the received
batch. The matrix T refers to the linear transform from Alice to
Bob, while T” refers to the linear transform from Calvin to Bob.
Notice that neither T nor 7’ are known to Bob. Rather, as shown
in Fig. 1, Bob receives the matrix 7', which cannot be directly
used to recover X.

Notice that in our model the error imposed by the Byzantine
adversary Calvin is assumed to be added to the original informa-
tion transmitted on the network. One can also consider a model
in which these errors overwrite the existing information trans-
mitted by Alice. We stress that if Calvin is aware of transmis-
sions on links, these two models are equivalent. Overwriting a
message with Z is equivalent to adding — Xz 4+ Z on the links
controlled by Calvin, where Xz represents the original trans-
missions on those links.

Definitions: Table I lists notation needed for our main re-
sults. We define the following concepts.

» The nerwork capacity, denoted by C, is the time average
of the maximum number of packets that can be delivered
from Alice to Bob, assuming no adversarial interference,
i.e., the max flow. It can be also expressed as the min-cut
from source to destination. (For the corresponding multi-
cast case, C is defined as the minimum of the min-cuts over
all destinations.)
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TABLE I
TERMS USED IN THE PAPER

Variable | Definition
C Network capacity.
z0 Number of packets Calvin can mnject.
zr ‘Number of packcts Calvin can hear.
b ‘Number of packets in a batch®.
n Length of each packet.
[ Alice’s redundancy.

“Throughout this work b is defined as C ~ zp

* The error probability is the probability that Bob’s recon-
struction of Alice’s information is inaccurate.

* The rate R is the number of information symbols that can
be delivered on average, per time step, from Alice to Bob.
Rate R is said to be achievable if forany ¢; > Oande; > 0
there exists a coding scheme of block length n with rate
> R — €2 and error probability < ¢;.

IV. SUMMARY OF RESULTS

We have three main results. Each result corresponds to
a distributed, rate-optimal, polynomial-time algorithm that
defeats an adversary of a particular type. The optimality of
these rates has been proven by prior work [2], [3], [29], [14].
Our work, however, provides a construction of distributed
codes/algorithms that achieve optimal rates. To prove our
results, we first study the scenario of high rate list decoding in
the presence of Byzantine adversaries. In what follows, let |7
denote the number of receivers, and |£| denote the number of
(hyper)-edges in the network.

A. Shared Secret Model

This model considers the transmission of information via net-
work coding in a network where Calvin can observe all trans-
missions, and can inject zo corrupt packets. However, it is as-
sumed that Alice can transmit to Bob a message (at asymptoti-
cally negligible rate) which is unknown to Calvin over a separate
secret channel. In Section VI, we prove the following.

Theorem |: The Shared Secret algorithm achieves an optimal
rate of C — zp with code-complexity O(nC3).

B. Omniscient Adversary Model

This model assumes an omniscient adversary, i.e., one from
whom nothing is hidden. As in the Shared Secret model, Calvin
can observe all transmissions, and can inject zo corrupt packets.
However, Alice and Bob have no shared secrets hidden from
Calvin. In Section VII, we prove the following.

Theorem 2: The Omniscient Adversary algorithm achieves
an optimal rate of C — 2z with code-complexity O((nC)?).

C. Limited Adversary Model

In this model, Calvin is limited in his eavesdropping power:
he can observe at most z; transmitted packets. Exploiting this
weakness of the adversary results in an algorithm that, like the
Omniscient Adversary algorithm, operates without a shared se-
cret. In Section VIII, we prove the following.
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Theorem 3: If z; < C — 2z, the Limited Adversary algo-
rithm achieves an optimal rate of C — z with code-complexity
O(nC3).

D. Linear List Decoding Model

A key building block in some of our proofs is a linear list
decoding algorithm. The model assumes the Omniscient Ad-
versary of Section I'V-B. We design a code that Bob can use to
output a linear list (of low dimension) that is guaranteed to con-
tain Alice’s message X. The list is then refined to obtain the
results stated in Theorems 1-3. In Section V we prove the fol-
lowing.

Theorem 4: The Linear List Decoding algorithm achieves a
rate of C' — 2o and outputs a list L that is guaranteed to contain
X. The list L is a vector space of dimension b(b + z5). The
code-complexity is O(nC?).

V. LINEAR LIST DECODING IN THE
OMNISCIENT ADVERSARY MODEL

Here we assume we face an omniscient adversary, i.e., Calvin
can observe everything, and there are no shared secrets between
Alice and Bob. We design a code that Bob can use in this sce-
nario to output a linear list (of low dimension) that is guaranteed
to contain Alice’s message X. Our algorithm achieves a rate of
R = C — zp. The corrupted information Y Bob receives en-
ables him to deduce a system of linear equations that X satis-
fies. This system of equations ensures that X lies in a low-di-
mensional vector space. We now present our algorithm in detail.
Throughout this and upcoming sections, b is fixed as C — zo.

A. Alice's Encoder

Alice’s encoder is quite straightforward. She simply arranges
the source symbols into the b x n matrix X, appended with a
b-dimensional identity matrix. She then implements the clas-
sical random network encoder described in Section ITI-B to gen-
erate her transmitted packets.

B. Bob's Decoder

Bob selects b + zp linearly independent columns of Y, and
denotes the corresponding matrix Y°, Here we assume, without
loss of generality (w.l.0.g.), that the column rank of Y is indeed
b + zp. The column rank cannot be larger than b + zo by (2).
If the column rank happens to be r < b + zo, Bob selects r
independent rows of Y and continues in a procedure analogous
to that described below. We also assume that Y'* contains the
last b columns of Y (comresponding to Alice’s b-dimensional
identity matrix). This is justified due to (2) and the assumption
(discussed below) that the intersection of the column spans of
T and T is trivial, i.e., [T'|T’] is regular (with high probability
over the random choices of intemal nodes in the network). The
remaining zo columns of Y* are chosen arbitrarily so that Y*
is invertible. The columns of X and Z corresponding to those
in Y'* are denoted X* and Z*, respectively. By (2).

Y* = [T/T') [)Z‘] .
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Also, since Y* acts as a basis for the columns of Y, we can
write Y = Y*F for some matrix F'. Bob can compute F' as
(Y*)~1 Y. Therefore, Y can also be written as

X*F
TJ 3)

y:mm[
Comparing (2) and (3), and again using the assumption that
[T'|T"] is invertible (with high probability) gives us

X =X°F @
Z=2"F. (5)

In particular, (4) gives a linear relationship on X that can
be leveraged into a list-decoding scheme for Bob (the corre-
sponding linear relationship from (5) is not very useful). The
number of variables in X'* is b(b + zp). Therefore, the entries
of the matrix X* span a vector space of dimension b(b + z0)
over F,. Bob's list is the corresponding b(b + 2o )-dimensional
vector space L spanned by X*F.

The only source of error in our argument arises if the intersec-
tion of the column-spans of T and T” is nontrivial, i.e.. if [T|T’
is singular. Butas shown in[11], aslong as b4+ 20 < C, thisis at
most |T||€|q~! for any fixed network. Since Calvin can choose
his locations in at most (I:;,') ways, the total probability of error
is at most ('fo') |T||€|g~*. The computational cost of design, en-
coding and decoding is dominated by the cost of computing F
and thereby a representation of L. This takes O(nC?®) steps.

Note: In the Linear List Decoding scheme described above,
Alice appends an identity matrix to her source symbols to ob-
tain the matrix X, causing (an asymptotically negligible) loss
in rate. This is also the standard protocol of [10]. We note that
our scheme works just as well even if Alice does not append
such an identity matrix, and .X consists solely of source sym-
bols. However, the appended identity matrix is used in the model
of Section VII. We now solve (4) under different assumptions on
Calvin’s strength.

VI. SHARED SECRET MODEL

In the Shared Secret model Alice and Bob have use of a strong
resource, namely, a secret channel over which Alice can transmit
a small amount of information to Bob that is secret from Calvin.
The size of this secret is asymptotically negligible in n. Note that
since the internal nodes mix corrupted and uncorrupted packets,
Alice cannot just sign her packets and have Bob check the signa-
ture and throw away corrupted packets—in extreme cases, Bob
may not receive any uncorrupted packets.

Alice uses the secret channel to send a random hash of her
data to Bob. Bob first uses the list-decoding scheme of Section V
to obtain a low-dimensional vector space L containing X'. He
then uses Alice's hash to identify X from L.

Let o be a parameter defined below. Let ry,...,r, be a
elements of F, chosen at random by Alice (and unknown o
Calvin). Let D = [d;;] be an n x a matrix in which d;; = (r;)".
Let XD = H. Alice sends to Bob a secret S comprising of the
symbols rq, ..., 7, and the matrix I1. The size of this secret is
thus a(a + 1), which is asymptotically negligible in n.
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Claim 5: Forany X' # X ll(l'e probability (over ry,...,74,)
that X'D = H is at most =
Proof: We need to prove that (X — X’)D # 0 with high
probability, where 0 is the zero matrix. As X # X' there is
at least one row of X which differs from X’. Assume w.l.0.g.
that this is the first row, denoted here as the nonzero vector
(z1,...,z,). The jth entry in the first row of (X — X')D is
F(r;) = 31—, ir}. As F(r;) is not the zero polynomial, the
probability (over ;) that F(7;) = 0 is at most %. This holds for
all entries of the first row of (X — X’)D. Thus, Lhegrobabi]ity

that the entire row is the zero vector is at most %) . (]

Let @« = b(b 4 zp) + 1. Let L be a list (containing X) of
distinct matrices. Let the size of L be ¢®~1.

Corollary 6: The probability (over ry, ..., r,) that there ex-
ists X’ € Lsuchthat X’ # X but X’D = XD is at most
n“/q.

Proof: We use Claim 5, and the union bound on all ele-
ments of L that differ from X. O

Note: The secret channel is essential for the following reason.
If the symbols ry, ..., o were not secret from Calvin, he could
carefully select his corrupted packets so that Bob’s list L would
indeed contain an X’ # X such that X'D = XD.

Bob is able to decode the original information X of
Alice. Namely, Corollary 6 establishes that the system
XD = X*FD = H has a single solution. This solution
can be found using standard Gaussian elimination.

The above implies a scheme that achicves rate C — zg. The
optimality of this rate is shown in prior work [14]. The prob-
ability of error is at most n®/q + |T||£|('zi|)/q. Here o« =
b(b+ z0) + 1. The computational cost of design, encoding, and
decoding is dominated by the cost of running the Linear List
Decoding algorithm, which takes time O(nC3).

VII. UNIQUE DECODING IN THE
OMNISCIENT ADVERSARY. MODEL

We now consider unique decoding. Our algorithm achieves
arate of R = C — 2z, which is lower than that possible in
the list decoding scenario. Recent bounds [2], [3] on network
error-correcting codes show that in fact C—22 is the maximum
achievable rate for networks with an omniscient adversary.

To move from list decoding to unique decoding in the omni-
scient model, we add redundancy to Alice’s information as fol-
lows. Alice writes her information X' in the form of a length-bn
column vector X. The vector X is chosen to satisfy DX = 0.
Here. D is a én. x bn matrix defined as the redundancy matrix.
The matrix D is obtained by choosing each element as an in-
dependent and uniformly random symbol from the finite field
Fq. and én > n(zp + ) for arbitrarily small e. This choice of
parameters implies that the number of pariry checks DX =0
is greater than the number of symbols in the zp packets that
Calvin injects into the network. We show that this allows Bob
1o uniquely decode, implying a rate of C —22¢. The redundancy
matrix D is known to all parties—Alice, Bob, and Calvin —and
hence does not constitute a shared secret.

Alice encodes as in Section V. Bob's decoding is as follows.
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Bob first runs the Linear List Decoding algorithm to obtain
(4) and (5). We denote the matrix comprising of the first zp rows
of I by F3, and the matrix comprising of the last b rows of F by
F,. By the constraints specified in Section V, the last b columns
of X* form an identity matrix. Thus, (4) transforms into

where X} comprises of the first 2o columns of X'*.
Recall that X is a vector corresponding to the matrix X . Upon
receiving Y, Bob computes F' and solves the system

X=X{Fi+F 0
DX =0. 8)

Here, only D and F are known to Bob. Our goal is now to show
that with high probability over the entries of the matrix D, no
matter which matrix F' was obtained by Bob, there is a unique
solution to (7) and (8). The matrix F' depends on the errors Z
Calvin injects. Calvin can choose these to depend on D. We take
this into consideration below.

The system of linear equations (7)-(8) can be written in ma-
trix form as

2 _[AF) | ¢ _
Ax-[ D‘]X_B

where A comprises of the submatrices A(F;) and D, A(F})
is a bn x bn matrix whose entries depend on F;, and B is a
length-n(b + 8) vector. It holds that the system (7)~(8) has a
unique solution if and only if A has full column rank. However,
Calvin has partial control over F', and his goal is to design his
error Z so this will not be the case.

In what follows, we show that Calvin cannot succeed.
Narmely, we show, with high probability over the entries of D,
that no matter what the value of F' is, the system (7)—(8) has
a unique solution. Our proof has the following structure. We
first show that for a fixed F), the matrix A has full column rank
with high probability over D. We then note that the number
of possible different matrices F) is at most ¢g*°" (this follows
from the size of F}). Finally, applying the union bound we
obtain our result. .

We start with some notation. Assume that X is arranged by
stacking the columns of X' one on top of the other, where the
columns of X5 appear on the top of X, Also, we fix the (7, j)th
entry of F; to be f;;. Then, the matrix

A= [A(DFI)]
has the following form:
[ (L= fia)l —faul —fiod 1
: : : 0
“frz0l  —fa:0] (1= fr0,20)1
=freo+td —=frzon1l e
: i : I
—fim —faml ~froml
L D |
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The matrix A is described by smaller dimensional matrices as
entries. Namely, the identity matrices [ appearing above have
dimension b, the identity matrix I has dimension b(n — zg),
and the zero matrix 0 has dimension zpb X b(n — 2p). We now
analyze the column rank of A,

Clearly, the last b(n — zp) columns of A are in-
dependent. Thus, any set of dependent columns of A
must include at least one of the first bzp columns. Let
Vo= {u1,. ., Ubsp3 V1, -+, Ub(n—z,)} be the set of columns
of A (here the {u;} vectors correspond to the leftmost bzo
columns of A). We break the {u;} and {v;} vectors into two
parts. The components of the {u;} and {v;} vectors in the top
bm rows of A are denoted, respectively, as {u;} and {v}}. The
components of the {u;} and {v;} vectors in the bottom én
rows of A are denoted, respectively, as {u/} and {v}}. The
matrix A is rank-deficient if and only if there exist {«;} and
{B;}. not all zero, such that }°; a;u; + 35, f,v; = 0. Note
that there is a one-to-one correspondence between the values
{a;} and the values {/3;} in the above equality. Namely, for
each setting of {a, }, there is a unique setting of {/3;} for which
Yiaiuf + ¥, G;v5 = 0. Further, for every setting of the
values {a;} (and a comresponding setting for {/3;}), the prob-
ability over D that 3=, ayu} + 3. 3;0% = 0'is at most ¢~
This implies that the probability ti o + ). Biv; = 0 s
asymptotically negligible. Then, an additional use of the union
bound on all g*=° possible values of {«;} suffices to obtain our
proof.

All in all, Bob fails to uniquely decode with probability
g*omg"* ¢=®" (the first term corresponds to the union bound
over the values of F} = [f;;]. the second term corresponds to
the union bound over the values of {a;}. and the third term cor-
responds to the failure probability). Setting § = 20 + £ suffices
for our proof. The computational cost of design, encoding, and
decoding is dominated by solving the system of (7)~8), and
thus equals O((nC)3).

VIII. LIMITED ADVERSARY MODEL

In this section, we combine the strengths of the Shared Se-
cret and the Omniscient Adversary algorithms of Sections VI
and VII, respectively. We then achieve the higher rate of C — z¢
without the need of a secret channel. The caveat is that Calvin is
more limited—he can only eavesdrop on part of the edges in the
network. Specifically, the number of packets he can transmit,
20, and the number he can eavesdrop on, z;, satisfy the tech-
nical constraint

2z0+ 21 < C. 9)

We call such an adversary a Limited Adversary.

The main idea underlying our Limited Adversary algorithm
is simple. Alice uses the Omniscient Adversary algorithm to
transmit a “short, scrambled” message to Bob at rate C — 22.
By (9). the rate z; at which Calvin eavesdrops is strictly less than
Alice’s rate of transmission C' — 2zp. Hence. Calvin cannot de-
code Alice's message, but Bob can. This means Alice’s scram-
bled message to Bob contains a secret $ that is unknown to
Calvin. Once $§ has been shared from Alice to Bob, they can
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use the Shared Secret algorithm to transmit the bulk of Alice’s
message to Bob at the higher rate C' — 2¢.

A. Alice's Encoder

Alice’s encoder follows essentially the schema described in
the previous paragraph. The information $ she transmits to Bob
via the Omniscient Adversary algorithm is padded with some
random symbols. This is for two reasons. First, the randomness
in the padded symbols ensures strong information-theoretic se-
crecy of S. That is, we show in Claim 7 that Calvin’s best es-
timate of any function of S is no better than if he randomly
guessed the value of the function. Second, since the Omniscient
Adversary algorithm has a probability of error that decays ex-
ponentially with the size of the input, it is not guaranteed to per-
form well when only a small message is transmitted.

Alice divides her information X into two parts [X; X>]. She
uses the information she wishes to transmit to Bob (at rate R =
(C = zp)(1 — A)) as the input to the encoder of the Shared
Secret algorithm. The output of this step is the b x n(1 — A)
submatrix .X';. Here A is a parameter that enables Alice to trade
between the probability of error and rate loss.

The second submatrix X5, which we call the secrecy matrix,
is analogous to the secret S used in the Secret Sharing algorithm
described in Section V1. The size of X is b x nA. Infact, X3 is
an encoding of the secret S Alice generates in the Shared Secret
algorithm. The v = (b(b + z0) + 1)(b + 1) symbols corre-
sponding to the parity symbols {r;} and the hash matrix H are
written in the form of a length-y column vector. This vector is
appended with symbols chosen uniformly at random from F,

to result in the length-(C — zp — 8)nA vector U Alice multi-

plies U ’“by arandom square matrix to generate the input U. This
vector U functions as the input to the Omniscient Adversary al-
gorithm operated over a packet-size nA with a probability of
decoding error that is exponentially small in nA. The output of
this step is X,.

The following claim ensures that S is indeed secret from
Calvin.

Claim 7: Lety = (b(b+2z0)+1)(b-+1). The probability that
Calvin guesses S correctly is at most ¢~7, i.e.. S is information-
theoretically secret from Calvin.

The proof of Claim 7 follows from a direct extension of the
secure communication scheme of [6] to our scenario.

The two components of X, i.e., X; and X,. respectively, cor-
respond to the information Alice wishes to transmit to Bob. and
an implementation of the low-rate secret channel. The fraction
of the packet size corresponding to X is “small.” i.e., A. Fi-
nally, Alice implements the classical random encoder described
in Section III-B.

B. Bob's Decoder

Bob arranges his received packets into the matrix
Y = [V; Y2]. The submatrices Y7 and Y are, respectively, the
network transforms of X; and X,.

Bob decodes in two steps. Bob first recovers S by decoding
Y> as follows. He begins by using the Omniscient Adversary
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TABLE 11
COMPARISON OF OUR THREE ALGORITHMS

Adversarial Raie omplexity
Strength

Shared 20 < C, C-20 O(nC?)

Secret 27 = network

Omniscient] zo < C/2, C —220 | O((nC)”)
21 = network

Limiled 21+220<C | C-20 O(nC?)

decoder to obtain the vector U. He then obtains U ' from U , by
inverting the m:}pping specified in Alice’s encoder. He finally

extracts from U the v symbols corresponding to S.

Alice has now shared S with Bob. Bob uses § as the side in-
formation used by the decoder of the Shared Secret algorithm
to decode Y7. This enables him to recover X';, which contains
Alice’s information at rate R = C — z¢. The probability of
error is dominated by the sums of the probabilities of error in
Theorems 1 and 2, with the parameter n replaced by nA. The
Limited Adversary algorithm is essentially a concatenation of
the Shared Secret algorithm with the Omniscient Adversary al-
gorithm, thus, the computational cost is dominated by the sum
of the two (with nA replacing n). Choosing A appropriately
(say nA = n'/?), one may bound the complexity by O(nC3).

[X. CONCLUSION

Random network codes are vulnerable to Byzantine adver-
saries. This work makes them secure. We provide algorithms?
which are information-theoretically secure and rate-optimal for
different adversarial strengths (as shown in Table II). When
the adversary is omniscient, we show how to achieve a rate of
C — 2z0, where zo is the number of packets the adversary in-
jects and C is the network capacity. If the adversary cannot ob-
serve everything, our algorithms achieve a higher rate, C — z¢.
Both rates are optimal. Further, our algorithms are practical;
they are distributed, have polynomial-time complexity, and re-
quire no changes at the internal nodes.
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Abstract—An information-theoretic approach for detecting Byzantine or
adversarial modifications in networks employing random linear network
coding is described. Each exogenous source packet is augmented with a
flexible number of hash symbols that are obtained as a polynomial func-
tion of the data symbols. This approach depends only on the adversary not
knowing the random coding coefficients of all other packets received by the
sink nodes when designing its adversarial packets. We show how the detec-
tion probability varies with the overhead (ratio of hash to data symbols),
coding field size, and the amount of information unknown to the adversary
about the random code.

Index Terms—Byzantine adversary, multicast, network coding, network
error detection.

1. INTRODUCTION

We consider the problem of information-theoretic detection of
Byzantine, i.e.. arbitrary, modifications of transmitted data tn a net-
work coding setting.

Interest in network coding has grown following demonstrations of
its various advantages: in network capacity [1]. robustness to noner-
godic network failures [2] and ergodic packet erasures 3], (4], and
distributed network operation [5). Multicast in overlay and ad hoc net-
works is a promising application. Since packets are forwarded by end
hosts to other end hosts, such networks are susceptible to Byzantine
errors introduced by compromised end hosts.

We show that Byzantine modification detection capability can be
added to a multicast scheme based on random linear block network
coding [5], [6], with modest additional computational and communica-
tion overhead, by incorporating a simple polynomial hash/check value
in each packet. With this approach, a sink node can detect Byzantine
modifications with high probability, as long as these modifications have
not been designed with knowledge of the random coding combinations
present in all other packets obtained at the sink: the only essential con-
ditton is the adversary’s incomplete knowledge of the random network
code scen by the sink. No other assumptions are made regarding the
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topology of the network or the adversary’s power to corrupt or inject
packets. The adversary can know the entire message as well as por-
tions of the random network code, and can have the same (or greater)
transmission capacity compared to the source. This approach works
even in the extreme case where every packet received by a sink has
been corrupted by being coded together with an independent adver-
sarial packet. This new adversarial model may be useful for applica-
tion scenarios in which conventional assumptions of an upper bound
on adversarial transmission capacity are less appropriate. For instance,
in some peer-to-peer or wireless ad hoc settings we may not know how
many adversarial nodes might join the network, while it may be more
likely that there will be some transmissions that are not received by the
adversarial nodes. In such cases, our approach can provide a useful al-
ternative to existing methods.

Our approach provides much flexibility in trading off between the
detection probability, the proportion of redundancy. the coding field
size, and the amount of information about the random code that is not
observed by the adversary. This approach can be used for low overhead
monitoring during normal conditions when no adversary is known to be
present, in conjunction with more complex, higher overhead techniques
which are activated upon detection of a Byzantine error. such as adding
more redundancy for error correction.

A preliminary version of this work with less general assumptions
appeared in [7]. The security model is substantially generalized and
strengthened in this work.

A. Background and Related Work

The problem of secure network communications in the presence of
Byzantine adversaries has been studied extensively, e.g., [8]-[11]. A
survey of information-theoretic research in this area is given in [12).
Two important issues are secrecy and authenticity;! this work concerns
the latter. Like one-time pads [13], our approach relies on the genera-
tion of random values unknown to the adversary, though the one-time
pad provides secrecy and not authenticity.

In the network coding context, the problem of ensuring secrecy in
the presence of a wiretap adversary has been considered in [14]-[16].
The problem of correcting adversarial errors, which is complementary
to our work, has been studied in [17}-[21].

Adversarial models in existing works on information-theoretic
authenticity techniques commonly assume some upper bound on the
number of adversarial transmissions, which leads to a requirement
on the amount of redundant network capacity. For the problem of
adversarial error correction or resilient communication, the number
of links/transmissions controlled by the adversary must necessarily
be limited with respect to the number of links/transmissions in a
minimum source-sink cut or the amount of redundancy transmitted
by the source. For instance, in the resilient communication problem
of Dolev er al. [9], the source and sink are connected by n wires, and
their model requires that no more than (n — 1)/2 wires are disrupted
by an adversary for resilient communication to be possible. In the
network coding error correction problems of [17], [20], [21], the rate
of redundant information that the source needs to transmit is between
one and two times thc maximum rate of information that can be
injected by the adversary, depending on the specific adversarial model.

The above techniques can also be considered in the context of error
detection. For example, in one phase of the secret sharing based algo-
rithm in [9], the source communicates a degree = polynomial f(r) €
F,(x) by sending f(i) on the ith wire. If the adversary controls at most
n — T wires, any errors it introduces can be detected. In general, for
approaches based on error-correcting codes such as in [17], the number

IThese are independent attributes of a cryptographic system [13].
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of adversarial errors that can be detected is given by the difference be-
tween the source-sink minimum cut and the source information rate.

Such approaches have a threshold nature in that they do not offer
graceful performance degradation when the number of adversarial
transmissions exceeds the assumed upper bound. Their efficiency is
also sensitive to overestimates of adversarial transmission capacity,
which determines the amount of redundancy required.

The adversarial mode! considered in this work is slightly different.
Instead of assuming a limit on the number of adversarial errors, our
only assumption is on the incompleteness of the adversary's knowl-
edge of the random code (the adversary can know the entire source
message). In this case, the overhead (proportion of redundant infor-
mation transmitted by the source) is no longer a function of the esti-
mated upper bound on the number of adversarial errors. Instead, it is
a design parameter which, as we will show, can be flexibly traded off
against detection probability and coding field size. Unlike approaches
based on secret sharing and its variants, where the required proportional
overhead is a function of the adversarial strength, in our approach, for
any nonzero proportional overhead and any adversarial strength short
of full knowledge or control of network transmissions, the detection
probability can be made arbitrarily high by increasing the field size.
The former has the advantage of deterministic guarantees, while our
approach has the advantage of greater flexibility with additional per-
formance parameters that can be traded off against one another.

The use of our error detection technique for low-overhead mon-
itoring under normal conditions when no adversary is known to be
present, in conjunction with a more complex technique activated upon
detection of an adversary, has a paralle! in works such as {22] and [23].
These works optimize for normal conditions by using less complex
message authentication codes and signed digests, respectively, during
normal operation, resorting to more complex recovery mechanisms
only upon detection of a fault.

B. Noation

In this work, we denote matrices with bold uppercase letters and vec-
tors with bold lowercase letters. All vectors are row vectors unless in-
dicated otherwise with a subscript 7. We denote by [z, y| the concate-
nation of two row vectors z and y.

II. MODEL AND PROBLEM FORMULATION

Consider random lincar block network coding [5]. [6]. [24] of a block
of r exogenous packets which originate at a source node and are mul-
ticast to one or more sink nodes. We assume that the network coding
subgraph is given by some separate mechanism. the details of which
we are not concerned with.2 An adversary observes some subset of
packets transmitted in the network, and can corrupt, insert or delete one
or more packets, or corrupt some subset of nodes. The only assump-
tion we make is that the adversary’s observations are limited such that
when designing the adversanial packets, the adversary does not know
the random coding combinations present in all other packets obtained
at the sinks. This assumption is made precise using the notion of secret
packets which we define below. The source and sinks do not share any
keys or common information.

Each packet p in the network is represented by a row vector w, of
d + ¢ + r symbols from a finite field F,, where the first d entries
are data symbols, the next ¢ are redundant hash symbols, and the last
r form the packet’s (global) cocfficient vector ¢,,. The field size is 2
to the power of the symbol length in bits. The hash symbols in each
exogenous packet are given by a function v'g : F‘; — F; of the data

2The network coding subgraph defines the times at which packets are or can
be transmitted on each newwork link (see, e.g.. [25])).
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symbols. The coefficient vector of the ith exogenous packet is the unit
vector with a single nonzero entry in the ith position. The coefficient
vectors are used for decoding at the sinks as explained below.

Each packet transmitted by the source node is an independent
random lincar combination of the r exogenous packets, and each
packet transmitted by a nonsource node is an independent random
lincar combination of packets received at that node. The coeffi-
cients of these linecar combinations are chosen with the uniform
distribution from the finite field F,, and the same linear operation
is applied to each symbol in a packet. For instance, if packet p; is
formed as a random linear combination of packets p; and p2, then
Wy, = Y1,3Wp, + 12.3Wp, Where 71,3 and 7.3 are random scalar
coding coefficients distributed uniformly over F,.

Let row vectorm; € Fs,"'*'” represent the concatenation of the data
and hash symbols for the ith exogenous packet, and let M be the ma-
trix whose ith row is m.;. A packet p is genuine if its data/hash symbols
are consistent with its coefficient vector, i.e., w, = [t,M,¢,]. The ex-
ogenous packets are genuine, and any packet formed as a linear com-
bination of genuine packets is also genuine. Adversarial packets, i.e.,
packets transmitted by the adversary, may contain arbitrary coefficient
vector and data/hash values. An adversarial packet p can be represented
in general by [t,M + v,,,t,], where v, is an arbitrary vector F;“". If
v, is nonzero, p (and linear combinations of p with genuine packets)
are nongenuine.

A set S of packets can be represented as a block matrix
[TsM + Vs|Ts] whose ith row is w, where p, is the ith packet
of the set. A sink node ¢ attempts to decode when it has collected a
decoding set consisting of r linearly independent packets (i.c., packets
whose coefficient vectors are linearly independent). For a decoding
set D, the decoding process is equivalent to premultiplying the matrix
[TpM + Vp|Tp) with T3'. This gives [M + T3'Vo|I], i.c., the
receiver decodes to M + M, where

M=T;Vp ()

gives the disparity between the decoded packets and the original
packets. If at least one packet in a decoding set is nongenuine,
Vo # 0, and the decoded packets will differ from the original
packets. A decoded packet is inconsistent if its data and hash values
do not match, i.e., applying the function ¢4 to its data values does not
yield its hash values. If one or more decoded packets are inconsistent,
the sink declares an error.

The coefficient vector of a packet transmitted by the source is uni-
formly distributed over F7; if a packet whose coefficient vector has
this uniform distribution is linearly combined with other packets, the
resulting packet’s coefficient vector has the same uniform distribution.
We are concerned with the distribution of decoding outcomes condi-
tioned on the adversary's information, i.c., the adversary’s observed
and transmitted packets, and its information on independencies/depen-
dencies among packets. Note that in this setup, scaling a packet by some
scalar element of F, does not change the distribution of decoding out-
comes.

For given M, the value of a packet p is specified by the row vector
u, = [t,,v,]. We call a packet p secret if, conditioned on the value
of v, and the adversary's information, its coefficient vector ¢, is uni-
formly distributed over F;\IV for some (possibly empty) subspace
or affine space W C F7.3 Intuitively, secret packets include genuine
packets whose coefficient vectors are unknown (in the above sense)

3This definition of a secret packet is conservative as it does not distinguish
between packets with a nonuniform conditional distribution and packets that are
fully known to the adversary. Taking this distinction inio accouni would make
the analysis more complicated bul would in some cases give a better bound on
detection probability.
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to the adversary, as well as packets formed as lincar combinations in-
volving at least one sccret packet. A set S of secret packets is se-
crecy-independent if each of the packets remains secret when the ad-
versary is allowed to observe the other packets in the set; otherwise
it is secrecy-dependent. Sccrecy-dependencies arise from the network
transmission topology. for instance, if a packet p is formed as a linear
combination of a set S of secret packets (possibly with other nonsecret
packets), then S U {p} is secrecy-dependent.

To illustrate these definitions, suppose that the adversary knows that
a sink’s decoding set contains an adversarial packet p; as well as a
packet p4 formed as some linear combination kow;,, + kaw,, of an
adversanial packet p, with a genuine packet p3, so the adversary knows
tp) . tp, . ¥p,, ¥p, and v,, = 0. Since adecoding set consists of packets
with linearly independent coefficient vectors, the adversary knows that
t,, and ¢,, are linearly independent. Suppose also that the adversary
does not observe the contents of any packets dependent on p3. Thus, the
distribution of ¢, . conditioned on the adversary's information and any
potential value kavy,, for v,,, is uniform over Fy\{kt;, : k € Fy}.
Also, packets p3 and p4 are secrecy-dependent.

Consider a decoding sct D containing one or more sccret packets.
Choosing an appropriate packet ordering, we can express [Tp|Vp] in
the form

A+ B, Vi
[TplVp]=|[CA+B; | V2 (2)
B; Vs

where for any given values of B, € Fi'*", V; € Fooxtate) =
1,2,3,and C € F3*>*"', the matrix A € F7'*" has a conditional
distribution that is uniform over all values for which T'p is nonsingular.
The first s; +s2 rows correspond to secret packets, and the first s; rows
correspond to a set of secrecy-independent packets. sz = () if there are
no secrecy-dependencies among the secret packets in D.

This notion of secret packets provides the most general characteri-
zation of the conditions under which the scheme succeeds. For a given
network topology, a requirement on the number of secrecy-independent
secret packets received at the sink can be translated into constraints on
the subsets of links/packets the adversary can observe and/or modify.
For instance, if information is sent on n parallel paths from a source to
a sink node, then the number of secrecy-independent secret packets is
the number of linearly independent packets received on paths that are
not observed or controlled by the adversary.

Note that we allow cach packet of the decoding set to be corrupted
with an independent adversarial packet. as long as at least one of the
packets has been formed as a lincar combination with some secret
packet.

1. MAIN RESULTS

In the following theorem, we consider decoding from a set of
packets that contains some nongenuine packet, which causes the
decoded packets to differ from the original exogenous packets. The
first pant of the theorem gives a lower bound on the number of equally
likely potential values of the decoded packets—the adversary cannot
narrow down the set of possible outcomes beyond this regardless of
how it designs its adversarial packets. The second part provides, for a
simple polynomial hash function, an upper bound on the proportion
of potential decoding outcomes that can have consistent data and hash
values, in terms of k = [2], the ceiling of the ratio of the number
of data symbols to hash symbols. Larger values for k correspond
to lower overheads but lower probability of detecting an adversarial
modification. This tradcofY is a design parameter for the network.

Theorem 1: Consider a decoding set D containing a secrecy-inde-
pendent subsct of s; secret (possibly nongenuine) packets. and suppose
the decoding set contains at least one nongenuine packet.
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a) The adversary cannot determine which of a set of at least (q—1)*!
equally likely values of the decoded packets will be obtained at the
sink. In particular, there will be at least s; packets such that, for each
of these, the adversary cannot determine which of a set of at least ¢ — 1
equally likely values will be obtained.

b) Let 4 : F¥ — F, be the function mapping (z1....
Fq. to

s Y

t"(.r.......rk)=.r'f+---+.rt+' 3)

where k = [2]. Suppose the function v'» mapping the data symbols
Ty,....T4 to the hash symbols y;....,y. in an exogenous packet is
defined by

¥ =v."(.r{,_|)k+1 ..... ik )
s Td)-

V= lam.n

-1
Ve = ""('r(r—-ljk+lv eee

Eaz = : e 1
Then the probability of not detecting an error is at most (‘—:'—) C

Corollary I: Let the hash function 4 be defined as in Theorem 1b.
Suppose a sink obtains more than r packets, including a secrecy-inde-
pendent set of s secret packets, and at least one nongenuine packet. If
the sink decodes using two or more decoding sets whose union includes
all'its received packets, then the probability of not detecting an error is

at most (%—‘-)

Example: With 2% overhead (¢ = 50), symbol length = 7 bits,
s = 5, the detection probability is at least 98.9%; with 1% overhead
(k = 100), symbol length = 8 bits, s = 5, the detection probability
is at least 99.0%.

1V. DEVELOPMENT, PROOFS, AND ANCILLARY RESULTS

A. Vulnerable Scenarios

Before analyzing the scenario described in the previous sections, we
first point out when this approach fails to detect adversarial modifica-
tions.

First, the sink needs some way of knowing if the source stops trans-
mitting, otherwise, the assumption of no shared secret information re-
sults in the adversary being indistinguishable from the source. One pos-
sibility is that the source cither transmits at a known rate or is inactive,
and that the sink knows at what rates it should be recciving information
on various subsets of incoming links when the source is active. If the
adversary is unable to reproduce those information ratcs, e.g., because
it does not control the same part of the network as the source, then the
sink knows when the source is inactive.

Second. if the adversary knows that the genuine packets received at
a sink have coefficient vectors that lic in some w:-dimensional subspace
W C F;, the following strategy allows it to control the decoding out-
come and so ensure that the decoded packets have consistent data and
hash values.

The adversary ensures that the sink receives w: genuine packets with
lincarly independent coefficient vectors in 1, by supplying additional
such packets if necessary. The adversary also supplics the sink with
r — u nongenuine packets whose cocfficient vectors ¢;,...,¢t._,, are
notin W, Let#,_,.+:....,¢ be aset of basis vectors for W, and let
T be the matrix whose ith row is ¢,. Then the coefficient vectors of the
r packets can be represented by the rows of the matrix

Bk

where K is a nonsingular matrix in F"**. From (5), we have

- [d
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Since the adversary knows T and controls V. it can determine M.

B. Byzantine Modification Detection

We next consider the scenario described in Section 11, where the ad-
versary designs its packets without knowing the contents of one or more
secret packets the receiver will use for decoding, and prove the results
of Section I11.

We first establish two results that are used in the proof of The-
orem !. Consider the hash function defined in (3). We call a vector
(TyooeovXig1) € Ff,'*l consistent if xi4y = ¥(x1,...,28).

Lemma 1: Atmost k + 1 out of the g vectors in a set

{u+v: vyEF,}

where u = (ug,.... ui41) is a fixed vector in FA*! and v =
(v1.....vk41) is a fixed nonzero vector in F4+', can be consistent.
Proof: Suppose some vector ¥ + v is consistent, i.e..

Ui + Yo = (4 70) oo (ue + ) @

Note that for any fixed value of  and any fixed nonzero value of v, (4)
is a polynomial equation in ~ of degree equal to 1+ k, where k €1,k
is the highest index for which the corresponding vi is nonzero, i.e.,

vi # 0,00 = 0V k' > k. By the fundamental theorem of algebra,
this equation can have at most 1 + k < 14 k roots. Thus, the property
can be satisfied for at most 1 + k values of +. O

Corollary 2: Letu be afixed row vectorin F; and Y afixed nonzero
matrix in Fy x(k+1) . If row vector g is dlsmbutcd uniformly over Fy,
then the vector u + gY is consistent with probability at most —'},'—

Proof: Suppose the ith row of Y, denoted y,, is nonzero. We can
partition the set of possible values for g such that each partition consists
of all vectors that differ only in the ith entry g,. For each partition, the
corresponding set of values of ¥+ gY is of the form {u' + gy, : g, €
F4}. The result follows from Lemma | and the fact that g, is uniformly
distributed over F,. (]

Proof of Theorem 1: We condition on any given values of

B;.V,.i=1,2.3,and Cin (2). Writing A' = A+ B, Tp becomes
A'
C(AI - B, )+ B,
B,
From (1), we have
A v
CA-B\)+B, | M= |V,
B; Vi
A Vi
~CB,+B: | M= |V,-CV,
B; Vs
which we can simplify to
A - v,
[£]i=[%] 0
by writing
i _ [~CBi+ B , _ [V2—-CV,
pa[OBB [V

2801

Since the determinant of a malrix' is not changed by adding a multiple of

is obtained from T'p by a sequence

A
one row to another row, and B

of such operations, we have

[B'J is nonsingular 4> T'p is nonsingular.

Thus, matrix A’ € F31*" has a conditional distribution that is uniform
'

over the set A of values for which is nonsingular.

A
Bl

The condition that the decoding set contains at least one nongenuine
packet corresponds to the condition Vp # 0. We consider two cases.
In each case, we show that we can partition the set A such that at most

.
afraction (‘—;ﬂ) of values in each partition give decoding outcomes

M + M with consistent data and hash values. The result then follows
since the conditional distribution of values within each partition is uni-
form.

Case I: V3 # 0. Let v, be some nonzero row of V3, and b, the
corresponding row of B'. Then b, M = v,.

We first partition A into cosets

A, ={A. +77"b, : reFy}. n=12....x

where

= AL

X'= q,l
This can be done by the following procedure. Any element of A can
be chosen as A,. Matrices A2, A3, ..., A, are chosen sequentially;
for each m = 2,...,\, A is chosen to be any element of A not in
the cosets A, n < m. Note that this forms a partition of A, since the
presence of some element ¢ in two sets A, and A.,. n < m, implies
that A, is also in A,,, which is a contradiction. It is also clear that each

coset has size |{r: r € F3'}| = ¢"*.
For cach such coset A.., the corresponding values of M satisfy, from

(5)
Ac+rTb) o [V,
[ B ]M‘[v;]

Al o V,-r"v,
[B']M‘[ v, ]
- A 17V V=T,
=5 "]

where r € F'. Let U be the submatrix consisting of the first s,
-1

B". . Since U is full rank, we can find a set 7 C

s indices that correspond to linearly independent rows
-1

columns of

iy r}o
of U.Let [U, | Uz ] be the s; x r submatrix of [';','] consisting of

rows with indices in 7. Consider the corresponding rows of M + M,
which can be expressed in the form

M;+U\V,-Uir"o, +U,V; )
where M 7 is the submatrix of M consisting of rows corresponding
to set 7. Since U, is nonsingular by the choice of 7, U »" takes
potentially any value in F3*. Thus, the set of potential values for each
row of (6), for any given value of M 7.A,,B". V., Vj,v,, and the
other rows, is of the form {u + v, : v € F,} where u is a function
of M7, A..B'.V,.V,. Applying Lemma | yields the result for this
case.

Case2: V3 =0.ie. V2 —CV, =V; =0.Then V,; # 0, since
otherwise V, = V2 = 0 and Vp = 0 which would contradict the
assumption that there is at least one nongenuine packet.
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We partition A such that each partition consists of all matrices in A
that have the same row space

A, = {RA,, : Re F;"‘", det(R) # 0}.
where

= N2 v

-1

al = [] (q"—q'). \=%~

=0

This can be done by choosing any element of A as 4., and choosing
A..n = 2,...,\ sequentially such that A, is any element of A not
mAm,m < n. )

For each A,,.n = 1,..., \, the corresponding values of M satisfy,

from (5)
RA.| & _ [V
%] %= [%]

5)a-[%)")

(5] [

. A"l -t
Let U be the submatrix consisting of the first s, columns of [ B ]) .

We can find an ordered set 7 = {i).... i <0 < iy} C
{1.....r} of s, indices that correspond to linearly independent rows
of U. Let Uz and M 7 be the submatrices of U and M, respectively,
consisting of the s, rows corresponding to 7. Then U 7 is nonsingular,
and the value of the matrix representation of the corresponding decoded
packets is uniformly distributed over the set

, U8

{M; +RV,: R € Fj***!, det(R') #0}. )

Let v be the rank of V';. Consider a set of v linearly independent
rows of V1. Denote by Z the corresponding set of row indices, and
denote by V1 the submatrix of V', consisting of those rows. We can
write

Vl = LVZ
where L € Fj'** has full rank ». We define Rr = R’ L, noting that
R;Vi=RLV: =RV,

and that Rz is uniformly distributed over all matrices in F;'*" that
have full rank v. Thus, (7) becomes

{M;/ + R;Vi: R1 € F}'™", rank(R1) = u}. (8)

Denote by r;.....r,, the rows of Rz, and by R,, the submatrix of
R; consisting of its first n rows. We consider the rows sequentially,
starting with the first row r,. For n = 1.....s;, we will show that
conditioned on any given value of R, . the probability that the i, th
decoded packet M, + r. V7 is consistent is at most 5—‘,"”—’

Case A: Rn_) has zero rank. This is the case if n = 1, orif n > 1
and R.._.l = 0.

Suppose we remove the restriction rank(Rr) = v, so that r, is
uniformly distributed over F;. By Corollary 2, m, + r,Vz would
have consistent data and hash values with probability at most £, With
the restriction rank(Rz) = v, the probability of r, being equal to O
is lowered. Since the corresponding decoded packet m,,, + r. V1 is
consistent for r, = O, the probability that it is consistent is less than

k+1

= )
Case B: n > 1 and R,,_, has nonzero rank.
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Conditioned on r,, being in the row space of R._,.r» = gR._,
where g is uniformly distributed over F.’,‘"‘. Since V7 has linearly in-
dependent rows, R.—1 V7 # 0, and by Corollary 2, the corresponding
decoded packet

m, +r.Vi=m, +gR._\V1

is consistent with probability at most .
Conditioned on r,, not being in the row space of R, ., we can par-
tition the set of possible values for r,, into cosets

{r+gR._.: geF;"'}

where r is not in the row space of R, the corresponding values of
the i, th decoded packet are given by

{m.,+*Vi+gR. \V1: geF;'}.

Noting as before that R, V1 # 0 and applying Corollary 2, the i, th
decoded packet is consistent with probability at most iqﬂ a

Proof of Corollary 1: Suppose two or more different sets of
packets are used for decoding. If not all of them contain ai least
one nongenuine packet, the decoded values obtained from different
decoding sets will differ: sets containing only genuine packets will be
decoded 1o M, while sets containing one or more nongenuine packets
will not. This will indicate an error.

Otherwise, suppose all the decoding sets contain at least one non-
genuine packet. Let S denote the set of s secrecy-independent packets.
Consider the decoding sets in turn, denoting by s, the number of un-
modified packets from S in the ith decoding set that are not in any set
J < i. Conditioned on any fixed values of packets in sets j < i, there
remain s, secrecy-independent packets in the ith dcc'oding set, and we

have from Theorem | that at most a fraction (%’—') " of decoding out-

comes for set i have consistent data and hash values. Thus, the overall
fraction of consistent decoding outcomes is at most

R A

V. CONCLUSION

We have described an information-theoretic approach for detecting
Byzantine modifications in networks employing random linear network
coding. Byzantine modification detection capability is added by aug-
menting each packet with a small, flexible number of hash symbols;
this overhead can be traded off against the detection probability and
symbol length. The hash symbols can be obtained as a simple poly-
nomial function of the data symbols. The only necessary condition is
that the adversarial packets are not all designed with knowledge of the
random coding coefficients of all other packets reccived by the sink
nodes. This approach can be used in conjunction with higher overhead
schemes that are activated only upon detection of a Byzantine node.
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Computational Complexity of Continuous Variable
Quantum Key Distribution

Yi-Bo Zhao, You-Zhen Gui, Jin-Jian Chen, Zheng-Fu Han, and
Guang-Can Guo

Abstract—The continuous variable quantum key distribution has been
considered to have the potential to provide high secret key rate. However,
in present experimental demonstrations, the secret key can be distilled only
under very small loss rates. Here, by calculating explicitly the computa-
tional complexity with the channel transmission, we show that under high
loss rate it is hard to distill the secret key in present continuous variable
scheme and one of its advantages, the potential of providing high sccret
key rate, may therefore be limited.

Index Terms—Computational complexity, continuous variable (CV),
error correction, quantum key distribution (QKD), reconciliation.

1. INTRODUCTION

Due to its potential for achieving high modulation and detection
speed, continuous variable (CV) quantum key distribution (QKD) has
recently attracted more and more attention. Compared to single photon
counting schemes, CVQKD does not require single photon sources
and detectors which are technically challenging now. The CVQKD
schemes typically use the quadrature amplitude of light beams as infor-
mation carrier, and homodyne detection rather than photon counting.
Some of these schemes use nonclassical states, such as squeezed states
(1] or entangled states [2], while others use coherent states [3}-{6]. Be-
cause the squeezed states and entangled states are sensitive to losses in
the quantum channel, coherent states are much more attractive for long
distance transmission. To improve the performance of the CVQKD
against the channel loss, Grosshans er al. proposed a reverse reconcilia-
tion (RR) protocol [11]. In the traditional direct reconciliation protocol,
Alice sends Bob the quantum state and also sends the reconciliation
information later.! Finally, Bob obtains Alice’s data without any error.
However, in the reverse reconciliation protocol, the quantum state is
sent by Alice to Bob, but the reconciliation information is sent by Bob
to Alice. Finally, Alice gets Bob's received data with no error.

Tabletop experimental setups that encode information in the phase
and amplitude of coherent states have been demonstrated [7], [8]. and
recent experiments have shown the feasibility of CVQKD in optical
fibers up to a distance of 55 km [9), [10], but without obtaining the
final secret keys.

Unlike the single photon QKD schemes, many CVQKD schemes uti-
lize the inertial quantum noise to protect information from Eve's attack
[7], [12]). However, at the same time the quantum noise also causes er-
rors between two legitimate communicators, Alice and Bob. 1t is widely
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'In the following, we use the conventional appellation. Alice is the quantum
state sender and Bob is the quantum state receiver.
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On network coding for security

Keesook Han Tracey Ho
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Caltech

Abstract The use of network coding in military networks
opens many interesting issues for security. The mixing of
data inherent to network coding may at first appear to pose
challenges, but it also enables new security approaches.
In this paper, we overview the recent current theoretical
understanding and application areas for network-coding
based security in the areas of robustness to Byzantine
attackers and of distributed signature schemes for down-
loads.

I. INTRODUCTION

The Global Information Grid (GIG) is the infrastructure
used to conduct Net-Centric Operations (NCO). The GIG
is intended to be a single information-sharing network with
multiple levels of security and bandwidth capabilities in net-
centric environment. A net-centric information environment
is inclusive of Core and Communities of Interest (COI)
enterprise services, a data sharing strategy, and the Task-Post-
Process-Use (TPPU) paradigm. The Global Information Grid
Bandwidth Expansion (GIG-BE) Program was a major DoD
net-centric transformational initiative exccuted by Defense
Information System Agency (DISA).

The ultimate purpose of the GIG-BE projects is to provide a
secure and reliable platform to enable worldwide Net-Centric
Operations for intelligence, surveillance and reconmaissance
and command and control massive amounts of informa-
tion sharing by providing “bandwidth-available™ environment.
Through GIG-BE, DISA leveraged DOD's existing end-to-
end information transport capabilities, significantly expanding
capacity and reliability to select Joint Staff-approved locations
worldwide and under new hardware and software contracts to
build a8 communications infrastructure. The GIG-BE that is in-
tended to provide high-capacity communications linking DoD
users at locations worldwide is a ground-based optical network
with up to 10-Gbps connections and averaging 105 Gbps per
link on the backbone networks. The GIG-BE program has
greatly contributed to the development of the real-time Net-
Centric Operations. However, a bottleneck link problem exists
between core networks and edge networks due to the enormous
difference in bandwidths.

The DoD supports NCO and GIG-BE projects to improve
quality of services in net-centric environment The current
coding systems will not be appropriate in the near future.
However, coding based scalable communication technology
has not been applied to the Net-Centric Operations. This tech-
nology will satisfy the bandwidth requirements of tomorrow’s
warfighters.

1-4244-1513-06/07/$25.00 ©2007 IEEE
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Network coding is a recent development in which nodes
in the network are allowed to perform algebraic operations
mside the network. This scheme was first introduced in [1]
and a powerful algebraic framework, which allows further
developments, was provided in [2], [3]. For multicast settings,
it was shown in [4], [5] that network coding performed in a
distributed, random fashion is with high probability optimal.
A tutorial on network coding can be found in [6], [7].

The specifics of the Scalable Information Operations (SIO)
include: 1. scalable coding techniques for network coding,
compression, channel coding multimedia data transmission,
encryption, data sharing, data anonymization, meta database
management, caching, network security, and intrusion detec-
tion. 2. Bottleneck flow control. The purpose of this paper
is to overview some of the recent developments in applying
network coding to security in the areas of detection and
correction of Byzantine attacks, and of cryptography for
network coding based file downloads. The aim of this paper
1s mainly tutorial and further technical details can be found in
[8]. [9]- Especially, our goal is to sketch how network-coding
based scalable information operations will mitigate some of
the security issues in the future net-centric environment

II. NETWORK-CODING BASED DETECTION AND
CORRECTION OF BYZANTINE ATTACKERS

The mixture of data that occurs in network coding can lead
to pollution attacks through rogue, or Byzantine, nodes in the
network [10], [11]. Such nodes may be unreliable through
failure or because of their being compromised. While the use
of network coding would at first appear to render the problem
of Byzantine attackers worse, it actually provides some strong
protection for both the detection and correction of such nodes.

The results in this secion have previously appeared in more
detailed form in [8]. We consider network error correction in a
distributed packet network setting with random linear network
coding using coding vectors. A batch of r packets is multicast
from a source node s to a set of sink nodes. An omniscient
adversary can arbitrarily corrupt the coding vector as well as
the data symbols of up to z, packets. A packet that is not a
linear combination of its mnput packets is called adversarial.

We describe below a polynomial-complexaty network error-
correcting code whose parameters depend on z,, the maximum
number of adversanal packets, and m, the minimum source-
sink cut capacity (maximum error-free multicast rate) in units
of packets over the batch. The number of packets in the batch
is set 8s r = m — z,. The proportion of redundant symbols in
each packet, denoted p, is setas p = (z,+€)/r for some ¢ > 0.
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The corresponding information rate of the code approaches
m — 2z, asymptotically as the packet size increases. If instead
of an omniscient adversary we assume that the source and
sinks share a secret channel not observed by the adversary, a
higher rate of m — z, is asymptotically achievable. Below we
give the details of the code for the omniscient adversary case.

For i = 1,...,r, the ith source packet is represented as a
length-n row vector x, with entries in a finite field F;. The first
n—pn—r entries of the vector are independent exogenous data
symbols, the next pn are redundant symbols, and the last r
symbols form the packet’s coding vector (the unit vector with
a single nonzero entry in the ith position). We denote by X the
r x n matrix whose ¢th row 1s X;; 1t can be wnitten in the block
foom [ U R I | where U denotes the r x (n — pn — )
matrix of exogenous data symbols, R denotes the rx pn matrix
of redundant symbols and I is the r x r identity matrix.

The rpn redundant symbols are obtained as follows. For
any matrix M, let v]; denote the column vector obtained
by stacking the columns of M one above the other, and v
its transpose, 8 row vector. Matrix X, represented in column
vector form, is given by v} = {vu,vR.vl]T. Let D be
an rpn X rn matrix obtained by choosing each entry inde-
pendently and uniformly at random from Fg. The redundant
symbols constituting v (or R) are obtained by solving the
matrix equation

M

D[Vu, VR, V]]T =0

for vr. The value of D is known to all parties.

An adversanal packet can be viewed as an additional source
packet. The vector representing the ith adversarial packet is
denoted z;. Let Z denote the matrix whose ith row is z;.

We focus on any one of the sink nodes ¢. Let w be
the number of linearly independent packets received by ¢;
let Y € Fy*™ denote the matrix whose ith row is the
vector representing the ith of these packets. Since all coding
operations in the network are scalar linear operations in Fy,
Y can be be expressed as

Y =GX+KZ @)

where matrices G € Fy*" and K € F7** represent the linear
mappings from the source and adversarial packets respectively
to the sink’s set of linearly independent input packets.

Since the last r columns of X form an identity matrix, the
matrix G’ formed by the last r columns of Y is given by

G’ =G + KL, 3

where L is the matrix formed by the last 7 columns of Z. The
sink knows G’ but not G. Thus, we rewrite (2) as

Y = G'X+K(Z-LX)

G'X+E 4

Matrix E gives the difference between the data values in the
received packets and the data values corresponding to their
coding vectors; its last r columns are all zero

Lemma 1: With probability at least 1 — /g, the matrix G’
has full column rank, where 7 is the number of links in the
network.

The decoding process at sink ¢ is as follows. First, the sink
determines z, the minimum cut from the adversarial packets
to the sink. This is with high probability equal to w —r. Next,
it chooses z columns of Y that, together with the columns
of G’, form a basis for the column space of Y. We assume
without loss of generality that the first = columns are chosen,
and we denote the corresponding submatrix G”’. Rewriting Y
in the basis corresponding to the matrix [G” G’|, we have

r— I. Y2 o
Y—[G Gr][o YX 1. (5)
This can be reduced by lincar algebraic mampulations to
G'X; = G'(YX +X,Y?) (6)

where X, X¢ are the matrices formed by the first z columns
of X and the next n — z — r columns of X respectively.

Proposition 1: With probability greater than 1 — "4, equa-
tions (1) and (6) can be solved simultaneously to recover X.
The decoding algorithm has complexity O(n®m?).

III. CRYPTOGRAPHY FOR CONTENT DISTRIBUTION WITH
NETWORK CODING

A. Background

Recently, several researchers explored the use of network
coding in peer-to-peer (P2P) content distribution and distrib-
uted storage systems [12], [13], [14]. A P2P network has a
fully distributed architecture, and the peers in the network
form a cooperative network that shares the resources, such
as storage, CPU, and bandwidth, of all the computers in the
network. This architecture offers a cost-cffective and scalable
way to distribute software updates, videos, and other large files
to a large number of users.

The best example of a P2P cooperative architecture is the
BitTorrent system [15], which splits large files into small
blocks, and after a node downloads a block from the original
server or from another peer, it becomes a server for that
particular block. Although BitTorrent has become extremely
popular for distribution of large files over the Intemet, 1t
may suffer from a number of inefficiencies which decrease its
overall performance. For example, scheduling is a key problem
in BitTorrent: it is difficult to efficiently select which block(s)
to download first and from where. If a rare block is only
found on peers with slow connections, this would create a
bottleneck for all the downloaders. Several ad hoc strategies
are used i BitTorrent to ensure that different blocks are
equally spread in the system as the system evolves. References
[12], [13] propose the use of network coding to increase
the efficiency of content distribution in a P2P cooperative
architecture. The main idea of this approach is the following.
The server breaks the file to be distributed nto small blocks,
and whenever a peer requests a file, the server sends a random
linear combination of all the blocks. As in BitTorrent, a peer
acts as a server to the blocks it has obtamned. However, in 8
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linear coding scheme, any output from a peer node is also
a random linear combination of all the blocks it has already
received. A peer node can reconstruct the whole file when
it has received enough degrees of freedom to decode all the
blocks. This scheme is completely distributed, and eliminates
the need for a scheduler, as any block transmitted contains
partial information of all the blocks that the sender possesses.
It has been shown both mathematically [12] and through live
trials [16] that the random linear coding scheme significantly
reduces the downloading time and improves the robustness of
the system

A major concemn for any network coding system is the
protection against malicious nodes. Take the above content
distribution system for example. If a node in the P2P network
behaves maliciously, it can create a polluted block with
valid coding coefficients, and then sends it out Here, coding
coefficients refer to the random linear coefficients used to
generate this block. If there is no mechanism for a peer to
check the integrity of a recewved block, a receiver of this
polluted block would not be able to decode anything for the
file at all, even if all the other blocks it has received are valid.
To make things worse, the receiver would mix this polluted
block with other blocks and send them out to other peers, and
the pollution can quickly propagate to the whole network. This
makes coding based content distribution even more vulnerable
than the traditional P2P networks, and several attempts were
made to address this problem. References [12], [17] proposed
to use homomorphic hash functions in content distribution
systems to detect polluted packets, and [18] suggested the use
of a Secure Random Checksum (SRC) which requires less
computation than the homomorphic hash function. However,
[18] requires a secure channel to transmit the SRCs to all
the nodes in the network Charles er al [19] proposed a
signature scheme based on Weil pairing on elliptic curves and
provides authentication of the data in addition to pollution
detection, but the computation complexity of this solution 1s
quite high Moreover, the security offered by elliptic curves
that admit Weil pairing is still a topic of debate in the scientific
commurity

In this section, we overview a new signature scheme,
presented in greater detail in [9], that is not based on elliptic
curves, and is designed specifically for random linear coded
systems. We view all blocks of the file as vectors, and make
use of the fact that all valid vectors transmitted in the network
should belong to the subspace spanned by the original set of
vectors from the file. We present a signature that can be used
to easily check the membership of a received vector in the
given subspace, and at the same lime, it is hard for a node to
generate a vector that is not in that subspace but passes the
signature test We show that this signature scheme 1s secure,
and that the overhead for the scheme is negligible for large
files.

B. Problem Setup

We model the network by a directed graph G4 = (N, A),
where [V is the set of nodes, and A s the set of communication

links. A source node s € N wishes to send a large file, of size
M, to a set of client nodes, ' C N, and we refer to all the
clients as peers. The large file is divided into m blocks, and
any peer receives different blocks from the source node or
from other peers. In this framework, a peer is also a server to
blocks it has downloaded, and always sends out random linear
combinations of all the blocks it has obtained so far to other
peers. When a peer has received enough degrees of freedom
to decode the data, 1.e., it has received m linearly independent
blocks, it can re-construct the whole file.

Specifically, we view the m blocks of the file, vy, ..., V.,
as elements in n-dimensional vector space Fj, where p is
a pnme. The source node augments these vectors to create
VECIOrS Vy,..., Vm, given by

Vi = (0, e i 2y O DRl gssint 'Uin):

where the first m elements are zero except that the ith onc is
1, and %y; € Fy, is the jth element in ¥4 Packets received by
the peers are linear combinations of the augmented vectors,

m
W = Zﬁivh
i=1

where f3; is the weight of v; in w. We see that the additional
m elements 1n the front of the augmented vector keep track
of the code vector, 3, of the corresponding packet.

As mentioned in the previous subsection, this kind of
network coding scheme is vulnerable to pollution attacks by
malicious nodes. Unlike uncoded systems where the source
knows all the blocks being transmitted in the network, and
therefore, can sign each one of them, in a coded system, each
peer produces “new”™ packets, and standard digital signature
schemes do not apply here. In the next subsection, we intro-
duce a novel signature scheme for the coded system.

C. Signature scheme for network coding

We note that the vectors vy, ..., Vi, span a subspace V of
F7'*", and a received vector w is a valid linear combination of
VECIOrs vy, ..., Vo, 1f and only if it belongs to the subspace V
This is the key observation for our signature scheme. In the
scheme described below, we present a system that 1s based
upon standard modulo arithmetic (in particular the hardness
of the Discrete Logarithm problem) and upon an invariant
signature o (V) for the linear span V. Each node verifies the
integrity of a received vector w by checking the membership
of w in V based on the signature o(V').

Our signature scheme 1s defined by the following ingredi-
ents, which are independent of the file(s) to be distributed:

o g¢: a large prime number such that p is a divisor of g — 1.
Note that standard techniques, such as that used in Digital
Signature Algonthm (DSA), apply to find such g.

» g: a generator of the group G of order p in F,. Since the
order of the multiplicative group Fg is ¢ — 1, which is a
multiple of p, we can always find a subgroup, G, with
order p in Fy

» Private key: K,r = {oi}i=1, . m+4n, 8 random set of
elements in F;. Ky 1s only known to the source.
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. Publlc kCy: Kpu = {h( = 90‘}1: 1,..,m+n- Kpu iS
signed by some standard signature scheme, e.g., DSA,
and published by the source.

To distribute s file in a secure manner, the signature scheme
works as follows.

1) Using the vectors vy,...,Vy, from the file, the source
finds & vector u = (uy,...,um4n) € Fg'*" orthogonal
to all vectors in V. Specifically, the source finds a non-
zero solution, u, to the equations

vieu=0, i=1,..,m

2) The source computes vector X = (uy/a,up/ag, ...,
Umin/Cmin)-

3) The source signs x with some standard signature scheme
and publishes x. We refer to the vector x as the
signature, o (V), of the file being distributed.

4) The client node verifies that x is signed by the source.

5) When a node receives a vector w and wants to venfy
that w is in V, 1t computes

m+n

d= [ Ap,
i=1

and venfies that d = 1.
To see that d 1s equal to 1 for any valid w, we have

m+n
d= H h;f.lll: = gz:“:t”(“'w‘) =1

f=1

where the last equality comes from the fact that u 1s orthogonal
to all vectors in V.

Next, we show that the system described above is secure. In
essence, the theorem below shows that given a set of vectors
that sausfy the signature verification criterion, it is provably
as hard as the Discrete Logarithm problem to find new vectors
that also satisfy the verification criterion other than those that
are in the linear span of the vectors already known.
Definition 1. Let p be a pnme number and G be a mulli-
plicative cyclic group of order p. Let & and n be two integers
such that & < n, and I’ = {h),...,hn} be a set of generators
of G Given a linear subspace, V, of rank k in F such that
for every v € V, the equality I'V £ [, A" = 1 holds, we
define the (p, &, n)-Diffie-Hellman problem as the problem of
finding a vector w € Fy withT" =1 butw ¢ V.

By this definition, the problem of finding an invalid vector
that satisfies our signature verification criterion is a (p, m, m+
n)-Diffie-Hellman problem
Theorem 1. For any k < n — 1, the (p. k,n)-Diffic-Hellman
problem is as hard as the Discrete Logarithm problem.

Proof: Assume that we have an efficient algorithm to
solve the (p, k,n)-Diffie-Hellman problem, and we wish to
compute the discrete algonthm log,(z) for some z = g%,
where g i1s a generator of a cyclic group G with order p
We can choose two random vectors r = (ry,...,7,) and
S = (81,...,8n) IN F;, and construct I' = {hy,..., h, }, where
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